"Heusler Alloys for Spintronic Devices"

organized by The Center for Spintronic Materials, Interfaces, and Novel Architectures (C-SPIN)

Interface-induced perpendicular magnetic anisotropy and giant tunnel magnetoresistance in Co₂FeAl Heusler alloy based heterostructures

Hiroaki Sukegawa

National Institute for Materials Science (NIMS), Tsukuba, Japan

In collaboration with Magnetic Materials Unit members in NIMS: S. Mitani, K. Inomata , Z. C. Wen (~2015.4 now Tohoku Univ. Japan), T. Scheike, T. Furubayashi, J. P. Hadorn, T. Ohkuboand K. Hono

University of Minnesota, Minneapolis, Minnesota, USA, July 30-31, 2015

NIMS: National Institute for Materials Science, Tsukuba, Japan (permanent staffs: 410, total ~1,500)

Outline

1. Background

<u>Co₂FeAl</u> Heusler alloy based magnetic tunnel junctions (MTJs) for MRAM applications

- 2. Perpendicular anisotropy in Co₂FeAl ultra-thin films
 - 2.1 Perpendicular magnetic anisotropy (PMA) and TMR in ultrathin Co₂FeAl/MgO structures
 - 2.2 Enhanced PMA by $Ru(02\overline{2}3)$ underlayer
 - 2.3 Possible mechanism of PMA
- 3. Co_2FeAI MTJs with a lattice-matched $MgAl_2O_4$ coherent barrier

MRAM (magnetoresistive random access memory)

C. Chappert, A. Fert and F. N. V. Dau, Nat. Mater. 6, 813 (2007) WL **Bit lines** BL Nonvolatile MRAM 'Cross point' MTJ architecture R_{AP}: **'1'** Infinite endurance R_P: **'0'** High speed 7/7 • High density **Op-Amp** Word lines (to R_{Ref}) \overline{W} \sim -Output MTJ **FETs** MTJ (magnetic tunnel junction) (in-plane mag. type) TMR ratio = Parallel (P) Antiparallel (AP) FM (free layer) R Tunneling barrier FM (pinned layer) Antiferromagnet **High resistance** Low resistance $R_{\rm P}$ R_{AP} **High TMR FM: Ferromagnet**

Properties needed for MRAM application

(1) High signal output (TMR) with tunable device resistance

High spin polarization materials

 --- Co-based Heusler alloys

New (coherent) tunneling barrier materials

--- MgAl₂O₄ based barrier

(2) High thermal stability of stored information

- High perpendicular magnetic anisotropy (PMA)
 - Bulk-induced anisotropy
 - --- Multilayers, L1₀/D0₂₂ based alloys...
 - Interface-induced anisotropy
 - --- ultrathin FM/insulator interface

(3) Low writing energy (low current density for STT writing)

- ✓ Low magnetic damping materials
 - --- Co-based Heusler alloys --- Mn-based PMA alloys

(4) New writing technology

- Magnetic anisotropy control by electric field
- ✓ Spin-orbit torque
 - Interface PMA system

Half-metallic full Heusler alloys

Co₂FeAI (CFA) Heusler alloy for spintronics

B2-ordered CFA is generally obtained by sputtering deposition.

1. Small lattice misfit of CFA/MgO(001)

Atomic step High-quality CFA/MgO-MTJs can be fabricated using a **sputtering method**.

2. Large TMR in CFA/MgO MTJs

Epitaxial CFA/MgO/CoFe(0.5 nm)/CFA (in-plane mag.)

TMR: 785% (10 K), 360% (RT)

W. H. Wang, HS et al., PRB82, 092402 (2010).

- High spin polarization and coherent tunneling
- Less temperature dependence of TMR ratio
- **3.** Possible low damping constant α

α ~ 0.001 for 50-nm-thick CFA(001) S. Mizukami *et al.*, JAP105, 07D306 (2009). (Tohoku group)

Effective for spin-transfer torque (STT) switching

Outline

1. Background

Co₂FeAl Heusler alloy based magnetic tunnel junctions (MTJs) for MRAM applications

- 2. Perpendicular anisotropy in Co₂FeAl ultra-thin films
 - 2.1 Perpendicular magnetic anisotropy (PMA) and TMR in ultrathin Co₂FeAl/MgO structures
 - 2.2 Enhanced PMA by $Ru(02\overline{2}3)$ underlayer
 - 2.3 Possible PMA mechanism

3. Co₂FeAl MTJs with a lattice-matched MgAl₂O₄ coherent barrier

Perpendicular MTJs

Perpendicular magnetic anisotropy (PMA)

PMA: higher thermal stability, lower STT switching current density

Bulk-induced PMA: b-PMA

Bulk PMA materials, Multilayers

 $L1_0$ -FePt, $D0_{22}$ -MnGa, amorphous-TbFeCo, $(Co/Pt)_n$, $(Co/Pd)_n$...

Small uniaxial magnetocrystalline anisotropy can be expected in bulk of **cubic** Heusler alloys.

→Use of Interface effect

Interface-induced PMA: i-PMA

Interface at ultrathin layer and oxide

Pt/Co/AlOx trilayers

Ultra-thin Co₂FeAl (CFA)/MgO structure

Perpendicular magnetization of Co₂FeAl (CFA) ultrathin films

MgO(001) sub./Cr/CFA(t nm)/MgO/Pt

Wen et al., APL98, 242507(2011).

Z. C. Wen *et al.*, APL**98**, 242507 (2011).

11

CFA/MgO/CoFeB p-MTJs on MgO(001)

Wen et al., APEX5, 063003 (2012).

perp-TMR at RT = 53% ~ 91%

Ultra-thin CFA (~1 nm) still has a high effective spin polarization.

Outline

1. Background

Co₂FeAl Heusler alloy based magnetic tunnel junctions (MTJs) for MRAM applications

2. Perpendicular anisotropy in Co₂FeAl ultra-thin films

- 2.1 Perpendicular magnetic anisotropy (PMA) and TMR in ultrathin Co₂FeAl/MgO structures
- 2.2 Enhanced PMA by Ru(0223) underlayer
- 2.3 Possible PMA mechanism
- 3. Co₂FeAl MTJs with a lattice-matched MgAl₂O₄ coherent barrier

Enhancement of PMA using the Ru buffer

 $K_{\rm s}$ (Cr-buffered) = 1.0 erg/cm² $K_{\rm s}$ (Ru-buffered) = 2.2 erg/cm²

HRTEM image of Ru-buffered CFA on MgO Ru (40)/CFA (1.2)/MgO (1.8)/[Fe (0.1)/CoFeB (1.3 nm)] Model (Bulk hcp-Ru) observation: MgO{110} plane norma Amo? e/CoFeB $a_{\rm Ru} = 0.2704 \, \rm nm$ *c*_{Ru} = 0.4278 nm 🗙 a axis 0 rock-salt MgO 0 (001)0 c axis ~ 0.149 nm (0001)Co₂FeAl bcc (001) d_{CEA(100)} ~ 0.285 nm (03-34)~0.27 nm (02-23) (0223) hcp Ru 9~51 (01-12) 0 $(02\overline{2}3)$ 0 $(0001)_{-}$ 0.4278 2 nm ∠(0001)-(02-23): **50.61**° °0223 ∠(02-23)-(03-34): 3.26° ∠(02-23)-(01-12): 8.20° $0\bar{1}11$ 0002 Nano $0\overline{1}1\overline{1}$ Nearly Ru(0223) growth electron-beam 0111 0002 diffraction (To be more accurate, $(03\overline{3}5)$ growth) $01\overline{11}$ Why do CFA and MgO grow epitaxially on it? 0223

Epitaxial relationship of MgO/Ru/CFA heterostructure

Nearly square lattice structure of the Ru plane can act as a template of the CFA(001) growth

Negligible effect of buffer/CFA interface to i-PMA Cr/CFA/Cr Ru/CFA/Ru 0.4 0.4 Cr/CFA/Cr Ru/CFA/Ru Ru Experimental 2K (Cr/CFA Experimental $-t_{d}$) (erg/cm²) 0.2 **2***K* **(Ru/CFA** 0.2 **CFA** Fitting Fitting Cr Ru **CFA** 0.0 Cr 2.0-C لار لار $T_{ex} = 350^{\circ}C$ $T_{ex} = 350^{\circ}C$ Subtraction of -0.6 └─ 0.0 -0.4 ∟ 0.0 0.5 0.5 dead layer 1.0 1.5 1.0 _ 1.5 $t_{\rm CFA} - t_{\rm d}$ (nm) $t_{CEA} - t_{d}$ (nm) thickness: t_d

18

Both Cr/CFA and Ru/CFA interfaces show negligible contribution to interface-PMA

$K_{\rm s}$ (Cr or Ru/CFA) ~ 0.1 erg/cm²

cf. CFA/MgO interface: $K_s = 1.0 \text{ erg/cm}^2$ (Cr-buffer), 2.2 erg/cm² (Ru buffer)

Large TMR ratio in a Co₂FeAI/MgO/CoFeB p-MTJ

Z. C. Wen et al., Adv. Mater. 26, 6483 (2014).

Ru/CFA (1.2)/MgO (1.8)/Fe (0.1)/Co₂₀Fe₆₀B₂₀(1.3 nm) p-MTJ

Over 130% TMR at RT in p-MTJ using the interface PMA of Co_2FeAI/MgO

The epitaxial Ru with a high crystal index opens up a new path in the development of engineered heterostructures combining hcp and cubic or tetragonal materials.

Outline

1. Background

Co₂FeAl Heusler alloy based magnetic tunnel junctions (MTJs) for MRAM applications

2. Perpendicular anisotropy in Co₂FeAl ultra-thin films

- 2.1 Perpendicular magnetic anisotropy (PMA) and TMR in ultrathin Co₂FeAl/MgO structures
- 2.2 Enhanced PMA by $Ru(02\overline{2}3)$ underlayer
- 2.3 Possible PMA mechanism
- 3. Co₂FeAl MTJs with a lattice-matched MgAl₂O₄ coherent barrier

Possible origin of i-PMA in bcc-Fe/MgO system

K. Nakamura *et al.*, PRB **81**, 220409(R) (2010). **Hybridization between oxygen and Fe atoms shifts up** m = 0 (3 d_{z2}) above E_F

H. X. Yang et al., PRB 84, 054401 (2011).

TABLE I. PMA value (erg/cm²) and magnetic moment $m [\mu_B \text{ per Fe}(\text{Co}) \text{ atom}]$ for different layers of Fe(Co) in Fe(Co)|MgO magnetic tunnel junctions under different oxidation conditions.

	Fe MgO			Co MgO:	
	Pure	Underoxidized	Overoxidized	pure	
PMA Fe $m(\mu_B)$	2.93	2.27	0.98	0.38 CC	
Interfacial	2.73	2.14	3.33	1.67	
Sublayer	2.54	2.41	2.70	1.84	
Bulk	2.56	2.55	2.61	1.60	

Hybridization between **oxygen** $2p_z$ and **Fe** $3d_{z2}$ orbitals plays an important role for PMA in the <u>Fe/MgO</u> system The calculated PMA energy density of Fe/MgO is much larger than that of Co/MgO

Co₂FeAl = Co rich (50 at.%) alloy

However, the band structures of Co-based Heusler alloys are considerably different from those of Fe or Co owing to their half-metallic properties.

spin-orbit interaction is treated as a perturbation for the tight binding approximation

Anisotropy of orbital magnetic moments between perpendicular (m_{orb}^{\perp}) and in-plane directions (m_{orb}^{\parallel}) is proportional to PMA (for 3*d* transition metals).

Angular-dependent x-ray magnetic circular dichroism (XMCD) study

To deduce the orbital magnetic moments along perpendicular and in-plane directions

$$K = \alpha \xi (m_{\rm orb}^{\perp} - m_{\rm orb}^{\parallel})$$

Element specific PMA energy

Spin-orbit splitting (33 meV for Fe)

 $m_{\rm orb}(\theta) = m_{\rm orb}^{\parallel} \sin^2 \theta + m_{\rm orb}^{\perp} \cos^2 \theta$

Angular-dependent XMCD study: hybridization Fe-O

Spectra taken in normal incidence (NI) and grazing incidence (GI) revealed the anisotropic orbital moments.

In collaboration with Prof. Okabayashi (Univ. Tokyo) BL-7A in Photon Factory, KEK

J. Okabayashi, HS et al., APL103, 102402 (2013).

MgO(001)sub./Cr(40 nm)/CFA(t)/MgO(2nm) $m_{\rm orb}(\theta) = m_{\rm orb}^{\parallel} \sin^2 \theta + m_{\rm orb}^{\perp} \cos^2 \theta$

TABLE I. Spin magnetic moments $(m_{\rm spin})$ and orbital magnetic moments of parallel and perpendicular components $m_{\rm orb}^{\perp}$, $m_{\rm orb}^{\parallel}$, respectively, of Fe and Co in Co₂FeAl layers of different thickness. The unit is $\mu_{\rm B}$.

	0.8 nm PMA		2 nm in-plane 10 nm anisotropy			
	Fe	Со	Fe	Со	Fe	Co
m _{spin}	1.83	1.21	2.08	1.22	1.91	1.21
$m_{\rm orb}^{\perp}$	0.32	0.16	0.22	0.14	0.21	0.13
$m_{\rm orb}^{\parallel}$	0.24	0.16	0.21	0.15	0.22	0.13

Large anisotropic Fe orbital moments at the CFA/MgO interface $(m_{orb}^{\perp}(Fe) > m_{orb}^{\parallel}(Fe))$

Bruno model: $0.37 \text{ erg/cm}^2 (\text{mJ/m}^2)$

XMCD result suggests contribution of Fe atoms (negligible small for Co) in CFA

Theoretical predictions of PMA at CFA/MgO interface

Ab initio calculation by Prof. Shirai Group (Tohoku U)

D. Mori et al., EB-07, Intermag 2012

PMA arises from **Co-terminated interface** for CFA/MgO(001) system (MgO/L2₁-CFA/MgO)

K_s: Interfacial PMA enargy density

Co-terminated case

K_s^{Co} = 0.99 erg/cm² (mJ/m²) --- PMA FeAl-terminated case

FeAl-terminated case

 $K_{\rm s}^{\rm FeAl} = -0.49 \, {\rm erg/cm^2} --- {\rm In-plane} \, {\rm MA}$

 $K_{\rm s}(\text{exp. Cr-buffered}) = 1.0 \, \text{erg/cm}^2$ $K_{\rm s}(\text{exp. Ru-buffered}) = 2.2 \, \text{erg/cm}^2$

Relevant report

R. Vadapoo, A. Hallal, M. Chshiev (SPINTEC group) arXiv:1404.5646v1

Co-terminated case

K_s^{Co} ~ 1.3 erg/cm² (mJ/m²) --- PMA

PMA is theoretically expected only in **Co-terminated CFA**, however **FeAI-terminated CFA** is more thermodynamically stable

Atomic model of B2-Co₂FeAl(001)

Termination layer of CFA?

Determination of the interfacial structure is needed

Outline

1. Background

Co₂FeAl Heusler alloy based magnetic tunnel junctions (MTJs) for MRAM applications

- 2. Perpendicular anisotropy in Co₂FeAl ultra-thin films
 - 2.1 Perpendicular magnetic anisotropy (PMA) and TMR in ultrathin Co₂FeAl/MgO structures
 - 2.2 Enhanced PMA by $Ru(02\overline{2}3)$ underlayer
- 3. Co₂FeAl MTJs with a lattice-matched MgAl₂O₄ coherent barrier (In-plane magnetized MTJ)

New coherent barrier material: Spinel MgAl₂O₄

- Giant RT tunnel magnetoresistance (TMR)
- Non-deliquescence
- Tunable lattice parameter: Good lattice matching with 3d ferromagnetic electrodes

Interface-induced PMA •

Status Solidi RRL 8, 841 (2014).

Mismatch (%) for (001) growth Electrode vs. MgAl₂O₄-based vs. MgO materials (0.421 nm) $(0.396 \sim 0.404 \text{ nm})$ bcc-Fe \sim

Lattice mismatch

(<i>a</i> =0.2866 nm)	-3.8	+0.3 ~ +2.5
L2 ₁ -Co ₂ FeSi (<i>a</i> = 0.564 nm)	-5.3	- 1.4 ~ + 0.8
L1 ₀ -FePt (<i>a</i> = 0.385 nm)	-8.6	-4.8 ~ -2.7
<i>DO</i> ₂₂ -MnGa (<i>a</i> = 0.390 nm)	-7.4	-3.4 ~ -1.4

Next generation spintronics materials

TMR at RT (CoFe(B) electrodes)

Lattice-matched Heusler Co₂FeAI/MgAI₂O₄ MTJs

Conclusion

Co₂FeAl-based heterostructures

Interface-induced PMA

- Perpendicular magnetic anisotropy in a Cr/Co₂FeAI/MgO (K_s ~ 1 erg/cm²) and p-TMR of 91% at RT.
- (2) Ru buffer layer as a new ferromagnetic layer growth: Unusual crystallographic orientation Ru(02-23) buffer enhanced PMA ($K_s \sim 2.2 \text{ erg/cm}^2$) and p-TMR (132% at RT)
- (3) Al interdiffuction from CFA layer to barrier was confirmed; the Fe-O hybridization owing to the interfacial reaction could be responsible for the strong PMA.

	Cr buffer	Ru buffer
Buffer orientation	bcc (001)	hcp ~(02223)
K _u (Merg/cm³) for 1-nm	0.8	3.1
K _s (erg/cm²)	1.0	2.2
TMR (%)	91 (RT)	132 (RT)

Review of PMA in CFA-based heterostructures \rightarrow Sukegawa *et al.*, SPIN **4**, 1440023 (2014).

Lattice-matched MTJ using Spinel barrier

Lattice-matched CFA/MgAl₂O₄/CoFe MTJs were successfully developed and giant TMR more than 280% at RT was demonstrated.

CFA-based (or CFA-derived) heterostructures will be a promising candidate for future spintronics applications

New perpendicular magnetization material: *N-deficient MnGaN*

- Ferromagnetic MnGaN with PMA ($K_{\rm H} \simeq 0.2 \text{ MJ/m}^3$)
- Flat film structure
- Low saturation magnetization (~100 emu/cc)
- Curie temperature >> room temperature
- Relatively high spin-polarization ~ 57% (PCAR)

New PMA material for spintronics

Lee et al., APL107, 032403 (2015).