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The Computational Efficiency Gap

IBM Watson playing Jeopardy, 2011
~200000 W

20 W 20 W

IBM Blue Gene supercomputer, equipped with 147456 CPUs and 144TB of
memory, consumed 1.4MW of power to simulate 5 secs of brain activity of a
cat at 83 times slower firing rates
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Device/Circuit/Algorithm Co-Design:
Spin/ANN

Top-Down N
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H'MD
Device-Circuit-Algorithm co-simulation framework used to generate behavioral models for
system-level simulations of neuromorphic systems

System Level Solution
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Investigate device physics to
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Calibration of device models with
experiments




BUILDING BLOCKS: MIEMORY, NEURONS, SYNAPSES

Lateral Spin Valve
(Local & Non-local)
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DW-MTJ: Domain Wall Motion/MTJ

READ

Tunneling Oxide | REAP  MTJ “Pinned Layer’

MTJ “Free Layer” Domain Wall

WRITE

“Pinned Layer”

= Three terminal device structure provides decoupled “write” and “read” current paths
= Write current flowing through heavy metal programs domain wall position

= Read current is modulated by device conductance which varies linearly with domain wall
position

Universal device: Suitable for memory, neuron, synapse, interconnects



DW-MTJ for Interconnects/Memory

/ Interconnect Design N Memory Bit-Cell
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Energy-efficient interconnect design can circumvent the energy and delay
penalties in CMOS based global interconnects for scaled technology nodes
DW-MTJ memory bit cell with decoupled “write” and “read” current paths



Thresholding (Activation)
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Step and Analog ANN Neurons

Synaptic current
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= Neuron, acting as the computing element, provides an output current (lour)
which is a function of the input current (lin)

= Axon functionality is implemented by the CMOS transistor

= Note: Stochastic nature of switching of MTJ can be in Stochastic Neural
nets
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Sum of Weighted Inputs (Dot Product)
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All-Spin Artificial Neural Network

electrical signal

Biological Neural Network

Synapses

GND
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= All-spin ANN where spintronic devices directly 5’ V v
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All-spin Neuromorphic Architecture



Benchmarking with CMOS Implementation

Neurons Power Speed Function | technology
~12uW
CMOS Analog (assume 1V 65ns Sigmoid /
neuron 1 [1] supply)
CMOS Analog : :
neuron 2 [2] 15uW / Sigmoid 180nm
CMOS Analog
neuron 3 [5] 70uW 10ns Step 45nm
Digital Neuron [3] 83.62uW 10ns 5-bit tanh 45nm
1 Hard-Limiting I\
Spin-Neuron 0.81uW Ins Step /
Soft-Limiting 1254w 3ns Rational/ /
\ Spin-Neuron =l Hyperbolic
L /

—
Compared with analog/ digital CMOS based neuron design, spin based neuron

designs have the potential to achieve more than two orders lower energy
consumption

[1]: A. J. Annema, “Hardware realisation of a neuron transfer function and its derivative”, Electronics Letters, 1994

[2]: M. T. Abuelma’ati, etc, “A reconfigurable satlin/sigmoid/gaussian/triangular basis functions”, APCCAS, 2006

[3]: S. Ramasubramanian, et al., "SPINDLE: SPINtronic Deep Learning Engine for large-scale neuromorphic computing”, ISLPED, 2014
[4]: D. Coue, etc “A four-quadrant subthreshold mode multiplier for analog neural network applications”, TNN, 1996

[5]: M. Sharad, etc, “Spin-neurons: A possible path to energy-efficient neuromorphic computers”, JAP, 2013
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Spiking Neuron Membrane Potential

Biological Spiking Neuron

electrical signal
LIF Equation:
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The leaky fire and integrate can be approximated by an MTJ — the magnetization
dynamics mimics the leaky fire and integrate operation



Spiking Neurons

LLGS Based Spiking Neuron
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Arrangement of DW-MTJ Synapses in Array

for STDP Learning
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Spintronic synapse in spiking neural networks exhibits spike timing dependent

plasticity observed in biological synapses

Programming current flowing through heavy metal varies in a similar nature as STDP

curve

Decoupled spike transmission and programming current paths assist online learning
15fJ energy consumption per synaptic event which is ~10-100x lower in
comparison to SRAM based synapses /emerging devices like PCM
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Stochastic SNN
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Artificial Neural Network Converted Spiking Neural Network

= We propose ANN-SNN conversion where the neural transfer function is
interpreted as the spiking probability of the neuron in a particular time-step

= Such a functionality is enabled by the stochastic device physics of switching
in @ Magnetic Tunnel Junction in presence of thermal noise

= System-level simulations indicate energy consumption of 19.5nJ per

iImage classification at the end of 50 time-steps of SNN simulation
(>97% accuracy on MNIST dataset)

Sengupta, Roy et al., IEEE Trans. On Electron Devices, 2016
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Computing with Coupled
STNOs



Spin-Neurons & Synapses: Coupled Spin-Torque
scillators -
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STNOs can be used to provide thresholding functionality with tunable
threshold



Edge Detection using STNOs

lpi.s based on pixel

intensity
N

Image

Gilbert damping constant (alpha) = 0.01 t=0.1ns
Saturation magnetization = 800 emu/cc

Magnet volume (IMA) = 20x20x2 nm3

Eb = 30kT

lambda = 2

epsilon prime =0

P=0.9

Hext = 11k Oe at 0.45 degrees from normal to the
plane; Ibias range = 10uA to 50uA (i.e 10uA for black
and 50uA for white pixels); Distance between STOs =
70nm (for coupling)




. Summary
e Spintronics do show promise for low-power non-
Boolean/brain-inspired computin

— Need for new leaning technigues suitable for
emerging devices

— Materials research, new physics, new devices,
simulation models

 Along (but interesting) path ahead...



