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The Computational Efficiency Gap

20 W20 W

~200000 W

IBM Watson playing Jeopardy, 2011

IBM Blue Gene supercomputer, equipped with 147456 CPUs and 144TB of memory, 

consumed 1.4MW of power to simulate 5 secs of brain activity of a cat at 83 times 

slower firing rates
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Neuromorphic Computing Technologies

3

Hardware Accelerators

Approximate 
Computing,  Semantic 
Decomposition, 
Conditional DLN

Spintronics-Enabled

• Spin neuron, IJCNN ’12, 

APL’15,  TNANO, DAC, 

DRC, IEDM

• Spintronic Deep Learning 

Engine, ISLPED ’14

• Spin synapse, APL ’15

• ….

• Approximate Neural Nets, 

ISLPED ’14

• Conditional Deep 

Learning,  DATE 2016

• ….

SW (Multicores/GPUs)

1 uJ/neuron
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Device/Circuit/Algorithm Co-Design: 
Spin/ANN/SNN
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BUILDING PRIMITIVES: MEMORY, NEURONS, SYNAPSES
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DW-MTJ: Domain Wall Motion/MTJ

 Three terminal device structure provides decoupled “write” and “read” current paths

 Write current flowing through heavy metal programs domain wall position

 Read current is modulated by device conductance which varies linearly with domain wall 

position

Universal device: Suitable for memory, neuron, synapse, interconnects
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DW-MTJ for Interconnects/Memory

Interconnect Design Memory Bit-Cell

 Energy-efficient interconnect design can circumvent the energy and delay 

penalties in CMOS based global interconnects for scaled technology nodes

 DW-MTJ memory bit cell with decoupled “write” and “read” current paths
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Simple ANN: Activation

8
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Spin Hall based Switching DW-MTJ

Switch a magnet using spin current, read using TMR effect
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Step and Analog ANN Neurons

9

 Neuron, acting as the computing element, provides an output current (IOUT) 

which is a function of the input current (IIN)

 Axon functionality is implemented by the CMOS transistor

 Note: Stochastic nature of switching of MTJ can be in Stochastic Neural 

nets

IN

OUT

IN

OUT

Step Neuron Analog Neuron
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Benchmarking with CMOS Implementation

Neurons Power Speed Energy Function technology

CMOS Analog 

neuron 1 [1]

~12µW 

(assume 1V 

supply)

65ns 780fJ Sigmoid /

CMOS Analog 

neuron 2 [2]
15µW / / Sigmoid 180nm

CMOS Analog 

neuron 3 [5]
70µW 10ns 700fJ Step 45nm

Digital Neuron [3] 83.62µW 10ns 832.6fJ 5-bit tanh 45nm

Hard-Limiting 

Spin-Neuron
0.81µW 1ns 0.81fJ Step /

Soft-Limiting

Spin-Neuron
1.25µW 3ns 3.75fJ

Rational/

Hyperbolic
/

[1]: A. J. Annema, “Hardware realisation of a neuron transfer function and its derivative”, Electronics Letters, 1994

[2]: M. T. Abuelma’ati, etc, “A reconfigurable satlin/sigmoid/gaussian/triangular basis functions”, APCCAS, 2006
[3]: S. Ramasubramanian, et al., "SPINDLE: SPINtronic Deep Learning Engine for large-scale neuromorphic computing", ISLPED, 2014
[4]: D. Coue, etc “A four-quadrant subthreshold mode multiplier for analog neural network applications”, TNN, 1996

[5]: M. Sharad, etc, “Spin-neurons: A possible path to energy-efficient neuromorphic computers”, JAP, 2013 

Compared with analog/ digital CMOS based neuron design, spin based neuron 

designs have the potential to achieve more than two orders lower energy 

consumption
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In-Memory Computing (Dot Product)
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All-Spin Artificial Neural Network

 All-spin ANN where spintronic devices directly 

mimic neuron and synapse functionalities and 

axon (CMOS transistor) transmits the neuron’s 

output to the next stage

 Ultra-low voltage (~100mV) operation of spintronic 

synaptic crossbar array made possible by 

magneto-metallic spin-neurons

 System level simulations for character 

recognition shows maximum energy 

consumption of 0.32fJ per neuron which is 

~100x lower in comparison to analog and 

digital CMOS neurons (45nm technology) 

Spin-synapse Spin-neuron

Biological Neural Network

Spintronic Neural Network

All-spin Neuromorphic Architecture
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Spiking Neural Networks 
(Self-Learning)
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Spiking Neuron Membrane Potential

The leaky fire and integrate can be approximated by an MTJ – the magnetization 

dynamics mimics the leaky fire and integrate operation

Biological Spiking Neuron MTJ Spiking Neuron 

LIF Equation: LLGS Equation:
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MTJ as a Spiking Neuron
Spikes at 3ns interval Spikes at 6ns interval

 MTJ magnetization leaks and integrates input spikes (LLG equation) in presence of thermal noise

 Associated “write” and “read” energy consumption is ~ 1fJ and ~1.6fJ per time-step which is much lower 

than state-of-the-art CMOS spiking neuron designs (267pJ [1] and 41.3pJ [2] per spike)



C-SPIN, Sep 20, 2016 16

Spiking Neurons

16

LLGS Based Spiking Neuron 

LLG Equation Mimicking Spiking Neurons

DW-MTJ base IF Neurons

DW Integrating Property Mimicking IF Neuron

Input Spikes

Membrane

Potential

Output Spikes

Input Spikes MTJ conductance
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Arrangement of DW-MTJ Synapses in 
Array for STDP Learning

• Spintronic synapse in spiking neural networks exhibits spike timing dependent 

plasticity observed in biological synapses

• Programming current flowing through heavy metal varies in a similar nature as STDP 

curve

• Decoupled spike transmission and programming current paths assist online learning

• 15fJ energy consumption per synaptic event which is ~10-100x lower in 

comparison to SRAM based synapses /emerging devices like PCM

Spike-Timing Dependent Plasticity
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Comparison with Other Synapses

Device Reference Dimension Prog. Energy Prog.

Time

Terminals Prog. 

Mechanism

GeSbTe

memristor

D. Modha

ACM JETCAS, 2013

(IBM )

40nm mushroom and 

10nm pore

Average 2.74 pJ/

event

~60ns 2 Programmed by 

Joule heating 

(Phase change)

GeSbTe

memristor

H.-S. P. Wong Nano

Letters, 2012

(Stanford)

75nm electrode 

diameter

50pJ (reset)

0.675pJ (set)

10ns 2 Programmed by 

Joule heating 

(Phase change)

Ag-Si 

memristor

Wei Lu

Nano Letters, 2010

(U Michigan)

100nmx100nm Threshold 

voltage~2.2V

~300µs 2 Movement of Ag 

ions

FeFET Y. Nishitani

JJAP, 2013

(Panasonic, Japan)

Channel Length-3µm Maximum gate 

voltage – 4V

10µs 3 Gate voltage 

modulation of 

ferroelectric 

polarization

Floating gate 

transistor

P. Hasler

IEEE TBIOCAS, 2011

(GaTech)

1.8µm/0.6µm 

(0.35µm CMOS 

technology)

Vdd - 4.2V

Tunneling Voltage 

– 15V

100µs 

(injection)

2ms

(tunneling)

3 Injection and 

tunneling currents

SRAM 

synapse

B. Rajendran

IEEE TED, 2013

(IIT Bombay)

0.3µm2 (10nm 

CMOS technology)

Average 328fJ for 

4-bit synapse

- - Digital counter 

based circuits

Spintronic 

synapse

NRL

Purdue

340nmx20nm Maximum 48fJ 

/event

1ns 3 Spin-orbit torque
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MTJ Enabled All-Spin Spiking Neural Network

Probabilistic Spiking Neuron

• A pre-neuronal spike modulated by synapse to generate 

current that controls the post-neuronal spiking probability.

• Exploit stochastic switching behavior of MTJ in presence of 

thermal noise.
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MTJ Enabled All-Spin Spiking Neural Network

Stochastic Binary Synapse

• Synaptic strength proportional to temporal correlation 

between pre- and post-spike trains.

• Stochastic STDP – Synaptic learning embedded in the 

switching probability of binary synapses.
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MTJ Enabled All-Spin Spiking Neural Network

Stochastic SNN Hardware Implementation

• Crossbar arrangement of the spin neurons and synapses 

for energy efficiency.
• Average neuronal energy of 1fJ and 1.6fJ per timestep for write and 

read operations, and 4.5fJ for reset.

• Average synaptic programming energy of 70fJ per training epoch.

Classification accuracy of 

73% for MNIST digit 

recognition.
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Computing with Coupled 
STNOs
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Coupled Spin-Torque Oscillators

STNOs can be used to provide thresholding functionality with tunable 
threshold

Coupled

IREF

IREF ± |Iin |

Reference
(STNO_R)

Processor
(STNO_P)

Integrator

VOUT

When |Iin | is within the locking range (neuron 
threshold), two oscillators are locked. 
Otherwise, they are unlocked.

VOUT = VHIGH when unlocked

VLOW when locked
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Edge Detection using STNOs

Image

Ibias based on pixel 
intensity

Gilbert damping constant (alpha) = 0.01
Saturation magnetization = 800 emu/cc
Magnet volume (IMA) = 20x20x2 nm3
Eb = 30kT
lambda = 2
epsilon prime = 0
P = 0.9
Hext = 11k Oe at 0.45 degrees from normal to the 
plane; Ibias range = 10uA to 50uA (i.e 10uA for black 
and 50uA for white pixels); Distance between STOs = 
70nm (for coupling)
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Summary

• Spintronics do show promise for low-power non-
Boolean/brain-inspired computing

• Need for new leaning techniques suitable for 
emerging devices

• Materials research, new physics, new devices, 
simulation models

• An exciting path ahead…


